
Una técnica de impresión 3D podría modificar de forma sustancial la manera en que se reparan las infraestructuras en Estados Unidos. Un equipo de la Universidad de Massachusetts Amherst (UMass Amherst) y el Instituto Tecnológico de Massachusetts (MIT), con apoyo del Departamento de Transporte de Massachusetts (MassDOT), logró aplicar por primera vez en campo el método denominado cold spray para restaurar la corrosión en un puente de Great Barrington, Massachusetts.
Según informó el MIT, se trata de la primera implementación exitosa de esta tecnología en una estructura real, lo que podría abrir nuevas vías para abordar el deterioro de miles de puentes en el país.
Un problema estructural: miles de puentes en mal estado
De acuerdo con el Report Card 2025 de la American Society of Civil Engineers, más del 55% de los 623.218 puentes en Estados Unidos presenta algún grado de deterioro: el 49,1% se encuentra en condición “regular” y el 6,8% en “mala”.
Restaurar todos ellos tendría un costo superior a los US$191.000 millones. “Cada vez que conduces, pasas por debajo o por encima de un puente corroído. Están en todas partes”, señaló Simos Gerasimidis, profesor de ingeniería civil en UMass Amherst, en declaraciones recogidas por el MIT.

Cómo funciona el cold spray
La técnica cold spray es un proceso de fabricación aditiva que permite reparar estructuras metálicas sin desmontarlas. Consiste en proyectar partículas de acero en polvo sobre la superficie corroída, utilizando gas comprimido y calentado. Estas partículas se adhieren al impactar, formando capas que restauran el espesor y las propiedades estructurales del material original.
Según detalló el MIT, esta tecnología ya había sido utilizada con éxito en la reparación de submarinos, aviones y embarcaciones. Sin embargo, la intervención en Great Barrington representa su primera aplicación en un puente en condiciones reales.
A diferencia de los métodos convencionales, que suelen implicar cortes prolongados de tráfico o traslado de componentes, el cold spray permite realizar reparaciones directamente en el sitio afectado, con menor impacto para los usuarios.

Prueba piloto y evaluación técnica
En la demostración, el equipo de UMass Amherst y MIT reparó una sección corroída de una viga de acero del puente. Técnicos de MassDOT participaron en el proceso, que se llevó a cabo sin interrupciones significativas del tránsito.
Según el MIT, el puente será demolido en los próximos años y las vigas tratadas se trasladarán a UMass Amherst para su análisis. Los investigadores evaluarán la adherencia del acero aplicado, su resistencia mecánica y el comportamiento ante la corrosión en condiciones reales, comparando estos datos con los obtenidos en pruebas de laboratorio.
Alianza académica y apoyo institucional
El proyecto fue posible gracias a la colaboración entre UMass Amherst, el MIT y MassDOT, junto con el respaldo del Research and Technology Transfer Program y la Massachusetts Manufacturing Innovation Initiative, gestionada por el Massachusetts Technology Collaborative (MassTech). Esta entidad proporcionó el equipamiento utilizado en la prueba piloto.
“Implica a MassDOT siendo receptivo a nuevas ideas, a UMass y MIT aportando el conocimiento, y a MassTech promoviendo la manufactura en el estado. Es un ganar-ganar para todos los involucrados”, destacó Gerasimidis, citado por el MIT.
De laboratorio a campo: años de investigación
El desarrollo de la técnica se apoya en investigaciones conjuntas entre UMass Amherst y el MIT, que trabajaron en un enfoque denominado digital thread. Este sistema permite escanear las superficies corroídas de manera precisa y calcular el perfil de material que debe ser depositado.
“Estamos emocionados de haber llevado esta tecnología más allá del laboratorio y al campo”, afirmó Haden Quinlan, gerente de programas del Center for Advanced Production Technologies del MIT. Por su parte, John Hart, jefe del Departamento de Ingeniería Mecánica, subrayó: “Esta es una colaboración tremenda donde la tecnología de punta se aplica a una necesidad crítica de infraestructura”.

Próximos pasos y adopción futura
Los resultados del análisis de las vigas tratadas serán clave para validar la efectividad del método. Según el MIT, los informes del proyecto están disponibles en el sitio web de MassDOT, lo que permitirá a otros especialistas evaluar su adopción a mayor escala.
El trabajo conjunto con organismos federales como el Departamento de Transporte de Estados Unidos y la Administración Federal de Carreteras también podría acelerar su implementación.
De acuerdo con el MIT, la experiencia en Great Barrington podría sentar las bases para transformar el mantenimiento de puentes en el país, con impactos en términos de costos, seguridad y sostenibilidad.
Últimas Noticias
Tubos de lava: el refugio subterráneo que podría proteger a los primeros colonos en Marte
Según informó Forbes, equipos internacionales prueban tecnología autónoma en entornos volcánicos análogos, generando mapas 3D que permitirán evaluar la viabilidad de hábitats protegidos para astronautas en próximas expediciones al planeta rojo

La inteligencia artificial frente al razonamiento y la creatividad, según un físico
El también divulgador, Andrés Rieznik, explicó en Infobae en vivo, por qué la IA no reemplazará al humano y cómo puede potenciar su pensamiento

Epilepsia: qué provoca los episodios de ausencia y pérdida de consciencia, según la ciencia
Una investigación liderada por científicos de la Universidad de Yale identificó el mecanismo que explica por qué algunas convulsiones tienen este efecto. La importancia de identificar estos factores para el desarrollo de nuevos tratamientos

Un nuevo registro de la fusión de agujeros negros confirma teorías de Albert Einstein y Stephen Hawking
Una señal inédita, captada por instrumentos de observatorios en Estados Unidos, Italia y Japón, permitió a especialistas comprobar con exactitud predicciones sobre el comportamiento de estos objetos extremos
