
La capacidad del cerebro humano para transformar experiencias fugaces en recuerdos duraderos ha intrigado a la ciencia durante décadas. Sin embargo, hasta ahora, los mecanismos precisos que permiten que ciertas memorias perduren mientras otras se desvanecen eran poco claros.
Un reciente estudio de la Rockefeller University, publicado en la revista Nature, revela una nueva perspectiva: la consolidación de la memoria a largo plazo está regulada por una secuencia de temporizadores moleculares que actúan en distintas regiones del cerebro, más allá de la existencia de un único interruptor o señal.
Durante mucho tiempo, la investigación se centró en dos áreas cerebrales: el hipocampo, especializado en la memoria a corto plazo, y la corteza, considerada el principal almacén de recuerdos a largo plazo. Sin embargo, este modelo resultó incompleto.

Según explicó Priya Rajasethupathy, directora del laboratorio de Dinámica Neural y Cognición de la Rockefeller University, la memoria no es un simple sistema de encendido y apagado, sino un proceso evolutivo, donde la decisión sobre qué conservar es dinámica y depende de múltiples factores.
Un experimento innovador con realidad virtual en ratones
Para avanzar en la comprensión de estos procesos, el equipo de la Rockefeller University diseñó un experimento en ratones utilizando realidad virtual.
Bajo la coordinación de Andrea Terceros, permitieron que los animales formaran recuerdos en ambientes especialmente diseñados, variando la cantidad de repeticiones y contextos. Observaron que la frecuencia con la que se vivía una experiencia influía directamente en la duración del recuerdo. Cuantas más veces se repetía, más probable era que persistiera.

Sin embargo, repetir una experiencia no basta para entender por completo cómo permanece la memoria. Por eso, la coautora Celine Chen empleó la herramienta de edición genética CRISPR para eliminar genes específicos en el tálamo y la corteza de los ratones.
Este enfoque permitió comprobar que la ausencia de determinadas moléculas podía alterar la duración de los recuerdos: cada molécula parecía actuar en distintos momentos del proceso de consolidación.
Temporizadores moleculares y la secuencia de la memoria
El principal avance del estudio fue demostrar que la memoria a largo plazo depende de una cascada ordenada de programas genéticos, equiparables a temporizadores moleculares. Los primeros se activan poco después de la experiencia y desaparecen rápido, facilitando el olvido de lo irrelevante.
Otros se encienden de manera más lenta y proporcionan una base estable para que los recuerdos realmente importantes se integren a largo plazo. De este modo, el cerebro decide, a través de una compleja secuencia, cuáles experiencias merecen ser almacenadas.

El análisis identificó tres genes centrales para el mantenimiento de la memoria: Camta1 y Tcf4 en el tálamo, y Ash1l en la corteza cingulada anterior. Ninguno resulta esencial en la formación inicial de la memoria, pero sí en su conservación con el paso del tiempo.
Cuando los investigadores bloquearon Camta1 y Tcf4, las conexiones entre tálamo y corteza se debilitaron y los recuerdos se perdieron. Esto significa que, para que una memoria se mantenga, el cerebro necesita activar estos genes en distintos momentos: Camta1 sostiene el recuerdo en las primeras etapas,Tcf4 le da estabilidad y Ash1l refuerza que permanezca por más tiempo. Si alguno de estos pasos falla, el recuerdo no logra consolidarse y termina por desaparecer.
Implicaciones y futuras aplicaciones en el tratamiento de la memoria
Para Priya Rajasethupathy, estos temporizadores moleculares actúan como una especie de filtro: “A menos que se promuevan los recuerdos a través de estos temporizadores, creemos que están destinados a olvidarse rápidamente”.
El gen Ash1l, además, pertenece a una familia de proteínas que participan en otros tipos de memoria celular, como la inmunológica o la relacionada con el desarrollo embrionario. Esto sugiere que el cerebro puede reutilizar estrategias celulares preexistentes para sustentar la memoria cognitiva.

Los descubrimientos aportan esperanzas para el tratamiento de enfermedades como el Alzheimer. Si se logran identificar con precisión los programas genéticos clave, sería posible, en el futuro, redirigir la consolidación de los recuerdos por circuitos alternativos en caso de daño cerebral, protegiendo así las experiencias más significativas.
El laboratorio de la Rockefeller University planea continuar estudiando cómo se activan estos temporizadores, en especial dentro del tálamo, que se perfila como pieza central en la consolidación de la memoria. El objetivo es entender la vida completa de un recuerdo y las posibilidades del cerebro para compensar daños en una región a través de otras vías.
Últimas Noticias
Por qué olvidamos las series que vemos en maratón: causas y efectos de la “memoria de pez”
El consumo intensivo reduce la capacidad de recordar tramas y personajes. Los expertos analizan el impacto de la sobrecarga informativa y ofrecen recomendaciones para preservar la salud cognitiva

Cuál es el alimento natural que ayuda a reducir el colesterol y proteger el corazón
La combinación de fibra, proteínas y antioxidantes en este alimento favorece el equilibrio metabólico y la protección arterial

Cómo la neurología enfrenta su mayor desafío en décadas frente al crecimiento de enfermedades mentales
En el Día del Neurólogo, expertos reflexionan sobre el trabajo que esta rama de la medicina demanda: mil millones de personas conviven con enfermedades neurológicas. Diagnósticos más precisos y nuevos tratamientos buscan solucionar este problema

Un fósil de pie de 3,4 millones de años confirma la existencia de una nueva especie de homínido
El análisis de restos hallados en Etiopía revela que el “pie de Burtele” corresponde al Australopithecus deyiremeda y plantea una nueva visión sobre la evolución de la marcha erguida en África oriental

Un nuevo estudio revela avances en la comprensión de la hiperacusia y la sensibilidad al ruido
Investigadores canadienses demuestran que el trastorno puede identificarse mediante la medición de sonidos más agudos, lo que facilita la detección precoz y la atención especializada


