Científicos lograron detectar materiales radiactivos con un láser a más de 30 metros

Experimentos recientes en laboratorio validaron el uso de pulsos láser infrarrojos para rastrear radiación alfa, una técnica clave para la seguridad nuclear

Guardar
La técnica utiliza un láser
La técnica utiliza un láser infrarrojo de dióxido de carbono para generar señales visibles en presencia de radiactividad (imagen Ilustrativa Infobae)

Un equipo de la Universidad de Maryland demostró la eficacia de una técnica láser capaz de identificar materiales radiactivos a mayores distancias que los métodos actuales. Las pruebas con polonio-210 mostraron resultados prometedores, aunque aún quedan desafíos por superar.

Los métodos tradicionales de detección de radiactividad dependen de la medición de partículas emitidas por la desintegración de materiales radiactivos. Estas partículas deben llegar hasta un detector, lo que limita el alcance del proceso a decenas de metros.

Esta restricción representa un obstáculo en el monitoreo de materiales fisionables, como el uranio y el plutonio, que deben ser rastreados para garantizar la seguridad nuclear internacional. Los resultados que lograron los científicos con esta tecnología se publicaron en la revista Physical Review Journals.

El método convierte electrones indetectables
El método convierte electrones indetectables en señales macroscópicas mediante la formación de plasma (Imagen Ilustrativa Infobae)

Cómo funciona la nueva tecnología láser

Con el objetivo de superar esta limitación, un equipo liderado por Howard Milchberg, de la Universidad de Maryland, desarrolló un método basado en láser infrarrojo de dióxido de carbono, que podría detectar materiales radiactivos a distancias de hasta 100 metros.

El procedimiento consiste en dirigir un pulso láser hacia una región donde podría haber material radiactivo. La radiación alfa del polonio-210 interactúa con las moléculas de aire, generando electrones libres.

Cuando el láser atraviesa esta zona, transfiere energía a los electrones, desencadenando una reacción en cadena que culmina en la formación de una pequeña bola de plasma visible. Esta dispersión del láser en el plasma es la señal clave que los investigadores utilizan para detectar la presencia de radiactividad.

“Es difícil detectar un solo electrón en el aire en algún lugar, pero lo que hace un láser es convertir esa cosa tan indetectable en algo detectable macroscópicamente”, explicó Milchberg en declaraciones recogidas por New Scientist.

Resultados de las pruebas en laboratorio

Las pruebas iniciales se llevaron a cabo en el Laboratorio Nacional Brookhaven, en Nueva York, donde el equipo utilizó un láser de gran tamaño y alta potencia. En ese entorno, el método funcionó con éxito a 10 metros de la fuente radiactiva.

En experimentos más recientes, utilizando un sistema más compacto, los investigadores lograron resultados alentadores a 30 metros y consideran que la técnica podría ser efectiva hasta 100 metros.

Kyle Hartig, de la Universidad de Florida, destacó en New Scientist que esta distancia es diez veces mayor que la alcanzada en estudios previos con tecnología láser.

Desafíos técnicos y limitaciones

Aunque los resultados son prometedores, el método aún enfrenta desafíos para su aplicación en el mundo real. Hartig advirtió que la configuración actual es demasiado grande para aplicaciones fuera del laboratorio y necesitaría volverse más portátil.

Otro desafío importante es que los materiales radiactivos suelen estar protegidos por estructuras que bloquean la emisión de partículas alfa.

Expertos destacan el potencial de
Expertos destacan el potencial de esta tecnología para rastrear materiales fisionables y armas nucleares (imagen Ilustrativa Infobae)

Igor Jovanovic, de la Universidad de Michigan, indicó que el método podría ser útil en situaciones en las que se sospecha la presencia de radiactividad en un punto específico, pero podría no ser efectivo si el material está blindado. Para abordar esta limitación, sugirió realizar pruebas con una variedad más amplia de radionucleidos.

Aplicaciones futuras y posibles mejoras

A pesar de estos obstáculos, la tecnología tiene potenciales aplicaciones estratégicas. Cameron Tracy, del Laboratorio de Riesgo y Seguridad de Berkeley, destacó en C&EN que un sistema de detección de radiación a larga distancia podría mejorar la identificación de materiales fisionables en tránsito y la detección de armas nucleares ocultas en distintos entornos, incluso en el espacio exterior.

Mientras tanto, el equipo de Milchberg sigue trabajando en el perfeccionamiento del sistema, explorando nuevos tipos de láser y modificaciones en la configuración experimental para ampliar la distancia de detección y hacer el método más viable para su uso en el mundo real.