
Un equipo internacional liderado por expertos de la Charité–Universitätsmedizin Berlin desarrolló un modelo de inteligencia artificial para clasificar más de 170 tipos de tumores con un nivel de precisión que supera el 97%.
El avance, publicado en la revista Nature Cancer, apunta a transformar el diagnóstico oncológico al permitir análisis precisos incluso con datos fragmentarios y sin necesidad de biopsias invasivas.
“El modelo no solo es preciso, sino también interpretable, lo que ofrece a los especialistas una comprensión clara de cómo se realizan las predicciones, algo fundamental en el ámbito clínico”, explicó el doctor Philipp Euskirchen, coautor principal del estudio.
Diagnóstico a partir de la metilación del ADN
Según divulgaron los autores, la técnica se basa en el análisis de patrones de metilación del ADN, un proceso epigenético que regula la actividad de los genes y cuya alteración es característica en células tumorales. Esta “huella epigenética” permite diferenciar con precisión subtipos de cáncer, incluso aquellos con rasgos histológicos similares.

“Cientos de miles de modificaciones epigenéticas actúan como interruptores de activación y desactivación de secciones individuales de genes. Sus patrones forman una huella única e inconfundible”, señaló Euskirchen, investigador en la sede de Berlín del Consorcio Alemán del Cáncer y del Instituto de Neuropatología de Charité.
Este modelo fue diseñado para funcionar con datos obtenidos a través de distintas plataformas tecnológicas, como microarrays o secuenciación por nanoporos.
“Nuestro objetivo era desarrollar un modelo que clasificara los tumores con precisión, incluso si se basaban únicamente en partes del epigenoma tumoral completo o si los perfiles se recopilaban mediante diferentes técnicas y con distintos grados de precisión”, indicó el bioinformático Sören Lukassen, jefe del grupo de Ómica Médica del Instituto de Salud de Berlín en Charité.

Precisión en más de 5.000 casos clínicos
El modelo fue validado con más de 5.000 muestras tumorales, alcanzando una precisión del 99,1% en tumores cerebrales y del 97,8% en cánceres generales. Además, mantuvo un rendimiento elevado incluso cuando se utilizaron datos incompletos o de baja resolución genómica.
“Nuestro modelo permite un diagnóstico muy preciso de tumores cerebrales en el 99,1% de los casos y es más preciso que las soluciones de IA existentes hasta la fecha”, aseguró Euskirchen.
Uno de los aportes más significativos de este modelo es su aplicación en escenarios donde realizar una biopsia resulta riesgoso. En esos casos, el análisis del líquido cefalorraquídeo puede ser suficiente para generar un diagnóstico confiable, lo que elimina la necesidad de intervención quirúrgica, siempre según estos especialistas.
“Examinamos el líquido cefalorraquídeo mediante secuenciación de nanoporos, una forma novedosa, muy rápida y eficiente de análisis genético. La clasificación realizada por nuestros modelos reveló que se trataba de un linfoma del sistema nervioso central, lo que nos permitió iniciar rápidamente la quimioterapia adecuada”, relató Euskirchen sobre un caso clínico reciente.

Además, el modelo puede emitir predicciones en cuestión de segundos, lo cual lo vuelve particularmente útil en contextos donde se requieren respuestas rápidas.
El modelo no solo podría mejorar la precisión del diagnóstico, sino que permitiría avanzar hacia la identificación de genes asociados a subtipos tumorales específicos, lo que podría dar lugar a nuevos biomarcadores y estrategias terapéuticas individualizadas.
“Detectamos cómo la metilación en genes específicos, como MUM1, se asocia con subtipos raros de tumores, lo que nos ayudará a entender mejor sus mecanismos biológicos”, añadió Euskirchen.
Si bien los resultados son prometedores, los autores advierten que algunos tipos raros de tumores están subrepresentados en los conjuntos de datos, lo que limita el alcance actual del modelo en ciertos casos. También se presentaron dificultades para diferenciar entre subtipos similares, como los carcinomas renales de tipo papilar y de células claras.

En colaboración con el Consorcio Alemán del Cáncer (DKTK), se están planificando ensayos clínicos en ocho centros oncológicos de Alemania. Uno de los objetivos es evaluar el uso de esta herramienta durante cirugías y en la práctica clínica habitual.
“Aunque la arquitectura de nuestro modelo de IA es mucho más sencilla que la de los enfoques anteriores y, por lo tanto, sigue siendo explicable, ofrece predicciones más precisas y, por consiguiente, una mayor certeza diagnóstica”, concluyó Lukassen.
Últimas Noticias
¿El ruido rosado ayuda a dormir mejor? La ciencia plantea dudas
Un estudio de la Universidad de Pensilvania en los Estados Unidos sugiere que podría acortar la fase REM del sueño, fundamental para procesar emociones y recuerdos

Alineación de planetas 2026: cuándo y cómo ver un increíble desfile de seis mundos en el cielo
El 28 de febrero de 2026, seis planetas coincidirán en una misma región del cielo vespertino, un evento astronómico infrecuente que no se repetirá hasta 2040

El frío, el hielo y el misterio del ARN: cuáles son los experimentos que buscan conocer el origen de la vida
Los nuevos hallazgos muestran que bajas temperaturas y microcanales congelados favorecen la supervivencia y replicación molecular. Por qué este avance brinda pistas sobre cómo surgieron los primeros organismos en la Tierra primitiva

El misterio de la llamada universal y cómo aves de 4 continentes usan la misma “alarma” ante depredadores
El hallazgo científico sugiere que la cooperación y la flexibilidad ante el peligro pueden haber sido claves en la evolución de sistemas complejos de señales, ofreciendo pistas sobre los orígenes del lenguaje en la naturaleza

Un estudio reveló que no todos los animales silvestres le tienen miedo a los seres humanos
Un análisis comparó cómo distintas especies ajustan su comportamiento ante la presencia de personas y encontró que las reacciones no siempre son de temor ni siguen un mismo patrón




