
Las pulseras digitales que se utilizan para monitorear la salud podrían ser útiles para detectar el coronavirus antes de que aparezcan los síntomas de la enfermedad, según una reciente investigación llevada adelante por científicos de Reino Unido, Suiza y Liechtenstein. Los hallazgos fueron publicados en la revista científica BMJ Open.
Para obtener los biomarcadores individuales, muchos de estos dispositivos miden la temperatura de la piel, la frecuencia cardíaca, la presión arterial y el ritmo respiratorio. Estos valores tomados por los relojes inteligentes, combinados con programas de inteligencia artificial, podrían determinar si una persona contrajo la infección por COVID-19.
Los investigadores del Imperial College de Londres, del Laboratorio Dr. Risch en Liechtenstein, y de la Universidad de Basilea en Suiza buscaron determinar si los cambios fisiológicos, monitoreados por un rastreador de actividad, podrían usarse para desarrollar un algoritmo automático que detecte la enfermedad antes del comienzo de los síntomas.

Para medir los biomarcadores, utlizaron los datos de usuarios del brazalete AVA, un dispositivo digital rastreador de fertilidad regulado y disponible comercialmente en varios países de Europa y en EEUU, que monitorea la frecuencia respiratoria y cardíaca, la temperatura de la piel de la muñeca y el flujo sanguíneo, así como la cantidad y calidad del sueño.
El estudio procesó datos de 1.163 participantes (todos menores de 51 años) entre marzo de 2020 y abril de 2021. Los participantes forman parte del estudio GAPP, que comenzó en 2010 y tiene como objetivo comprender mejor el desarrollo de los factores de riesgo cardiovascular en la población de Lichtenstein. Los investigadores eligieron el brazalete AVA porque sus datos ya se habían utilizado en un algoritmo automático para detectar los días más fértiles de ovulación de las mujeres en tiempo real, con un 90 % de precisión.
Los participantes usaron el dispositivo durante la la noche, los datos de cada persona se guardaron cada 10 segundos en la pulsera. En total, se registraron 1,5 millones de horas de datos fisiológicos. Luego, los brazaletes digitales se sincronizaron con una aplicación del teléfono móvil al despertar. Todos se sometieron periódicamente a pruebas rápidas de anticuerpos para SARS-CoV-2. Quienes tuvieron síntomas también se sometieron a una prueba PCR.

Durante el período de estudio, 127 participantes (11%) desarrollaron infección por COVID-19. Entre ellos, 66 voluntarios (52%) habían usado su brazalete durante al menos 29 días antes del inicio de los síntomas y fueron confirmados como positivos por la prueba de PCR, por lo que fueron incluidos en el análisis final.
Los científicos notaron cambios significativos en los cinco indicadores fisiológicos durante los períodos de incubación, presintomático, sintomático y de recuperación de COVID-19 en comparación con las mediciones de referencia. Los síntomas de COVID-19 duraron un promedio de 8,5 días. El algoritmo fue “entrenado” utilizando el 70% de los datos del día 10 al día 2 antes del inicio de los síntomas dentro de un período de 40 días de seguimiento continuo de las 66 personas que dieron positivo por SARS-CoV-2. Luego se probó en el 30% restante de los datos.
La doble combinación del rastreador de salud y el algoritmo informático identificó correctamente al 68% de las personas con COVID-19 dos días antes de que aparecieran los síntomas.

Los investigadores reconocieron que los hallazgos se basaron en solo una pequeña muestra de personas, todas relativamente jóvenes, por lo que es menos probable que tengan síntomas graves de COVID-19. Además, la precisión y sensibilidad lograda fue inferior al 80 %. Sin embargo, el algoritmo ahora se está investigando en un estudio con 20.000 en los Países Bajos, y los resultados se esperan para finales de este año, anticiparon los investigadores en su documento.
Por todo esto, los científicos subrayaron que si bien una prueba de hisopo PCR sigue siendo el estándar de oro para confirmar la infección por COVID-19, “los hallazgos sugieren que un algoritmo de aprendizaje automático basado en dispositivos portátiles puede servir como una herramienta prometedora para la detección presintomática o asintomática de COVID-19″.
“Nuestra investigación muestra cómo estos dispositivos móviles, junto con la inteligencia artificial, pueden impulsar la límites de la medicina personalizada y detectar enfermedades antes de la aparición de síntomas, lo que podría reducir la transmisión del virus en las comunidades”, concluyeron en su informe.
SEGUIR LEYENDO:
Últimas Noticias
Descubrieron 85 lagos subglaciales en la Antártida: su posible impacto en el nivel del mar
El registro estuvo a cargo de científicos que trabajaron con datos del satélite CryoSat de la Agencia Espacial Europea (ESA). Los detalles

Pedro Lylyk, referente mundial en neurocirugía endovascular: “El impacto del ACV va más allá del paciente y afecta a toda la sociedad”
Hoy, el accidente cerebrovascular es la primera causa de discapacidad del mundo, aunque disminuyó la mortalidad. La cumbre SIMI 2025 reunirá esta semana en Buenos Aires a los mejores expertos del planeta para abordar las últimas innovaciones en la prevención. El neurocirujano y líder del congreso habló con Infobae

Eclipse solar parcial del 21 de septiembre: dónde y cómo verlo de forma segura
Distintas regiones del hemisferio sur podrán presenciar este fenómeno astronómico. Los detalles

Por qué las próximas misiones de la NASA a la Luna podrían ser una plataforma para llegar a Marte
El programa Artemis pretende probar tecnologías, rutinas de trabajo y capacidades humanas lejos de la Tierra. Los planes a futuro

¿Está el mundo preparado para una tormenta solar extrema?
El avance hacia una sociedad hipertecnológica ha incrementado la vulnerabilidad ante el clima espacial. Un fenómeno de ese tipo podría provocar apagones masivos, colapsos en internet y afectar satélites y servicios esenciales en todo el planeta
